上海-利兹制动系统及摩擦材料学术研讨会

时间:2019-10-21浏览:1编辑:摄影:    通讯员:设置


上海-利兹制动系统及摩擦材料学术研讨会

Shanghai-Leeds Symposium on Braking  System and Friction Material

 

时间 : 201910219:00-17:00

 

地点:上海理工大学 格致堂201报告厅


 

会议主席 /  Chairpersons

David Barton

英国利兹大学机械工程学院院长

Dean, College of Mechanical Engineering,  University of Leeds, UK

郑松林 / ZHENG  Songlin

上海理工大学汽车工程研究所所长

Director, Automobile Engineering Research  Institute, University of Shanghai for Science and Technology,  China

简介/  Introduction:

制动系统和摩擦材料对汽车、高铁以及其它车辆的安全行驶至关重要并对环境产生重要影响。本次学术研讨会邀请国内外著名制动系统企业和学术专家对制动系统和摩擦材料的创新技术进行深入探讨和交流,包括:制动系统结构的优化和创新设计,制动摩擦振动噪声的机理研究,制动摩擦新材料的开发,摩擦制动排放的控制,以及摩擦制动的测试技术和法律法规。本学术研讨会将成为有规律的年会,分别在中国的上海和英国的利兹两个城市轮流召开。

Brake systems and friction materials  are critical to the safe driving of cars, high-speed trains and other vehicles  and have a significant impact on the environment. This symposium invites  well-known domestic and foreign brake system companies and academic experts to  conduct in-depth discussions and exchanges on innovative technologies of brake  systems and friction materials, including: optimization of brake system  structure and innovative design, the research on the mechanism of braking  frictional vibration and noise, development of new braking friction materials,  control of friction brake emissions, and testing techniques and laws and  regulations for braking. This symposium will be a regular annual meeting, held  in Shanghai in China and Leeds in the UK.



9:00 - 9:40

eynote  speech/主旨报告A Pragmatic Approach to  Understanding the Mechanisms of Brake Judder and Noise

Speaker/报告人:John  Fieldhouse 教授

Introduction to  Speaker/报告人简介:

Professor  John Fieldhouse is a professor at  the University of Huddersfield, a National Teaching Fellow and has for many  years been a visiting professor at the University of Leeds - teaching chassis  systems and vehicle performance. He is a Chartered Engineer (CEng) and a Fellow  of the Institution of Mechanical Engineers (FIMechE). He is also a Fellow of the  Higher Education Academy (FHEA) and a Member of the Society of Automotive  Engineers (MSAE). His presentations at conferences have been recognized through  best presentation awards leading to the Lloyd L. Withrow Distinguished Speaker  Award and his contribution to the braking industry and academia the SAE Dan  Mahannah Award.

约翰·菲尔德豪斯(John Fieldhouse)教授是哈德斯菲尔德大学(University of  Huddersfield)教授,国家级教学名师,多年来一直是利兹大学的客座教授-教学底盘系统和车辆性能。  他是一名特许工程师(CEng)和机械工程师学会(FIMechE)的会士。 他还是高等教育学院(FHEA)的院士,也是汽车工程师协会(MSAE)的成员。  他的演讲曾获得了Lloyd L. Withrow杰出演讲奖,由于他对汽车制动行业和学术界的贡献,获得了SAE的 Dan  Mahannah奖。

报告摘要:

本演介绍了盘式制动器的噪声特性以及在噪声产生过程中涉及的主要因素。 它将对制动器设计人员,NVH工程师和OEM测试工程师都非常有用。  至少在所有各方都参与讨论此类问题时,这将使OEMS及其工程师的供应链对制动噪声有一个共同的认识。 
     这是一种务实的方法,它提供了一系列常规的制动噪声频率,并且在进行任何制动噪声
研究或“修复”时都需要考虑那些因素。  将显示出制动盘以可预测的方式展现出径向的振动模式,并且该振动模式可用于预测可能的噪声频率。 另一方面,摩擦片显示出弯曲和扭转模,但是其模态形式无法预测。

演讲最后提出了一些建议,这些建议确定了盘式制动器设计中的通用设计特征(建议的“缺陷”)以及这些特征如何导致噪声的产生。这些研究非常清楚地说明了为什么对某些噪声的“修复”有效,以及在设计阶段如何最好地修改这些特征以解决噪声问题。

  

9:40 - 10:20

Keynote speech/主旨报告:

中国汽车制动系统技术发展趋势

China Brake System Technical  Development Trend

Speaker/报告人:GE  Hong/葛宏总监

Introduction to  Speaker/报告人简介:

Mr. Ge  Hong, professor-level senior  engineer, Shanghai Excellent Academic Leader, currently serves as China R&D  Director of Hydraulic Brake System in Continental. He has been engaged in the  research and development of automotive brake systems for more than 30 years, and  have rich experience in this field. His leading development projects have won  many national and provincial-level technical innovation awards.

葛宏先生是教授级高级工程师,上海市优秀学科带头人,目前担任德国大陆集团液压制动系统事业部中国区研发总监。从事汽车制动系统研发工作超过30年,其主导开发的项目曾多次荣获国家及省市级科技创新奖,在制动系统开发领域拥有极为丰富的经验。

报告摘要:

本演讲介绍了在整车宏观环境变化及技术变革对汽车制动系统的影响下,未来制动系统发展趋势,同时指明了车辆技术发展对传统制动产品带来的变化,以及对新型制动产品提出的更高需求。演讲中不仅明确了未来车辆发展的具体方向,更加阐明了促使车辆发展大方向的具体技术内容,从而逻辑性的推理出未来制动系统的全面布局,提出了诸多创新性的制动相关产品及技术趋势。本次演讲将对在整车制造行业及制动系统供应商任职的工程师及技术人员提供宝贵并有价值的观点。希望借此引起制动行业的进一步深入思考及变革。

10:35 -  11:20

Keynote speech/主旨报告:

Fundamental of Friction Material  Manufacturing and Testing

Speaker报告人: Mohammad  Vakili先生

Introduction to  Speaker/报告人简介:

Mr.  Mohammad Vakili has been in  Friction Material industries, both aftermarket and OE, since 1978. He has a B.S.  & M.S. in Chemical Engineering from the University of Massachusetts and post  graduate studies at the University of Bradford, U.K. He has held numerous  positions from Process & Product Developmental Engineer/Formulator to Vice  President of Technical Services & International. During his tenure, he  worked for Wagner Automotive, HKM, ITT, Continental and Fritec. Mr. Vakili is  currently an industry consultant and has been teaching Friction Materials for  nearly 20 years globally including for SAE International.

Mohammad  Vakili先生自1978年以来一直从事摩擦材料行业,包括售后市场和OE。他在马萨诸塞大学(University of  Massachusetts)或得化学工程学士学位,并在英国布拉德福德大学(University of Bradford  University)获得硕士学位。他曾担任过多个职位,从过程与产品开发工程师/配方师到技术服务及国际副总裁。 在正式任职期间,他曾在Wagner  Automotive,HKM,ITT,Continental和Fritec工作过。 Vakili先生目前是一名行业顾问,并且在全球包括SAE  International在内教授摩擦材料已有20年的经验。

报告摘要:

本演讲是为期一天的摩擦材料原理研讨会的简明版本。讨论将围绕摩擦材料的历史,随后是摩擦系数的概念。制动器摩擦材料的艺术和科学以及制造汽车制动器所需的四个主要原材料组。摩擦材料的配方和配合取决于原材料来源和选择。摩擦副的性能要求取决于世界各地驾驶员的习惯和期望。 
     制动摩擦配方设计师面临的挑战始于原材料,协同作用,混合和混合顺序,背板的选择和准备,溢料与正成型,是否焦烧等等。分步处理与自动化是另一个因素,不仅影响产品质量,而且影响生产率。摩擦材料的测试在工作台或车辆上进行?;疾馐钥梢允俏锢砘蚧Р馐?。一般而言,制动摩擦材料的制造是一个宏观过程(输入),而测试是微型输出。因此,输出始终是输入的输入。 
     制动摩擦材料制造商面临许多问题,这取决于他们的客户是谁。原装产品和售后市场客户是两个完全不同的客户群,具有不同的期望值。欧洲与北美和中国或日本是完全不同的技术市场。取决于无尘轮胎市场,无铜衬里等环境问题扮演着重要角色。十年前,在美国几乎没人关注过轮毂灰尘问题,如今,这已经成为一笔交易!目前,全世界都在研究车轮尘埃作为副产品的刹车排放物。何去何从?这取决于发展趋势和不断增长的技术需求。

11:20 -  12:00

Invited speech/邀请报告:

Brake Particle  Emissions

Speaker/报告人: Scott  Tonn博士

Introduction to  Speaker/报告人简介:

Dr. Scott  Tonnhas worked in automotive braking  system engineering for over 25 years and has led teams in brake system design,  brake NVH, vehicle/lab testing, and foundation brake development. Scott is  currently the Chief Engineer and Director of Sales for Link Engineering in  China.

    Scott’s career includes 14 years  as Chassis System Development Sr. Manager at Advics North America. Scott was  responsible for Advics North America’s laboratories for brake development  including dynamometer test, vehicle evaluation, component bench test, and  overall brake NVH. Scott established the brake system design group in North  America as part of the Chassis System Development Department. Prior to joining  Advics, Scott was a Product Design Engineer at Ford & Visteon for Research  & Development of next generation interactive brake technology in the Chassis  Advanced Technology (CAT) division. Areas of focus were Brake-By-Wire (BBW),  regenerative braking, interactive fail safe, vehicle dynamics, actuator design,  and brake system design. Scott/Visteon were awarded patents for integration of  Eddy Current Retarder/Friction Brake designs for passenger vehicle applications  and for interactive control strategies in by wire systems.

    Scott’s early career was spent as  a Friction Material and NVH Engineer at Akebono North America during the 1990’s  and as a design and release engineer at Motor Wheel Corporation for automotive  brake rotor, drum, and wheel hub design.

Scott  Tonn博士从事汽车制动系统工作已有25年以上,并领导了制动系统设计,制动器NVH,车辆/实验室测试以及基础制动器开发方面的团队。  Scott目前是Link工程在中国的首席工程师和销售总监。 
    Scott的职业生涯包括在Advics North  America担任底盘系统开发高级经理14年。斯科特负责Advics北美实验室的制动器开发工作,包括测功机测试,车辆评估,零件工作台测试和整体制动器NVH。  Scott是底盘系统开发部的一部分,在北美成立了制动系统设计小组。在加入Advics之前,Scott是福特&Visteon的产品设计工程师,负责底盘先进技术(CAT)部门的下一代交互式制动技术的研究与开发。重点领域是线控制动(BBW),再生制动,交互式故障保险,车辆动力学,执行器设计和制动系统设计。  Scott /  Visteon的涡流减速器/摩擦制动器设计与乘用车应用以及线控系统中的交互式控制策略集成在一起,并获得了专利。 
    Scott的早期职业是1990年代在Akebono  North America担任摩擦材料和NVH工程师,以及在Motor Wheel  Corporation担任汽车刹车盘,鼓和轮毂设计的设计和应用工程师。


13:50  -14:20

Invited speech/邀请报告:

Novel Friction Pairs for  Environmental-friendly Automotive Brakes

Speaker/报告人: Shahriar  Kosarieh博士

Introduction to  Speaker/报告人简介:

Dr.  ShahriarKosariehis a  Chartered Mechanical Engineer (CEng), Lecturer in Mechanical Engineering and  skilled researcher where he is highly active in the areas of tribology and  surface engineering. His research employs a mixture of experimental and  theoretical techniques to gain a better understanding of interactions between  innovative coatings and functional surfaces in the dry and lubricated contacts.  My areas of research involve actively using a wide range of materials testing  and analytical tools. His primary focus is currently on friction braking systems  and the tribological interactions at the friction interfaces in the creation of  brake dust and particulates.

Shahriar  Kosarieh博士是一名特许机械工程师(CEng),利兹大学机械工程学院讲师和专业研究人员,在摩擦学和表面工程领域非?;钤?。  他的研究结合了实验和理论技术,以更好地理解创新涂层与干式和润滑式接触器中功能性表面之间的相互作用。 他的研究领域涉及积极使用各种材料测试和分析工具。  他目前的主要研究方向是摩擦制动系统以及在产生摩擦粉尘和微粒时摩擦界面的摩擦学相互作用。

报告摘要:

在可预见的将来,包括电动和混合动力电动汽车在内的所有公路车辆都将必须配备摩擦制动器。然而,随着汽车工程师努力实行严格的排放新目标,传统的摩擦制动器存在重大的环境问题,这将越来越引起人们的关注。了解制动系统的摩擦学原理,可以通过开发下一代环保汽车制动器摩擦副来减少有害磨损颗粒的产生。一种方法是通过研究第三体层(TBL)的产生,组成及其对摩擦,磨损,NVH和颗粒物排放的影响。因此,将有可能针对诸如电动和自动驾驶之类的新型汽车的应用优化开发出刹车片。本演讲重点介绍了我们在利兹大学进行的三个制动器方面的重要研究,这些方面可能对与摩擦制动器有关的环境问题产生重大影响:1)采用小尺寸的测试系统进行摩擦学性能研究;  2)通过使用涂层轻合金制动盘来减轻当前铸铁制动盘的重量,并采用自动降低噪音的策略来减轻制动器产生的有害噪音;  3)最小化摩擦制动器产生的颗粒磨损碎屑。在每种情况下,都采用了包括同时使用计算分析和实验测试的基本方法。该演讲清楚表明,如何使摩擦制动器更环保,从而能够为未来汽车所应用的重要性。


14:20 -  14:50

Invited speech/邀请报告:汽车制动异响分析与制动副结构优化

Automobile Braking Noise Analysis  and Substructure Optimization

Speaker/报告人: Yu  Song/虞松教授

Introduction to  Speaker/报告人简介:

Dr. Yu  Songis a professor in the Department of Engineering Mechanics  at Shandong University. Research interests focus on finite element, numerical  simulation of metal forming process, analysis of liquid and solid coupling, etc.  As a principle investigator, Prof. Yu has completed couples of research projects  funded by NSFC, Shandong Natural Science Foundation, China Post Doctoral  Foundation, and carried out cooperated researches with famous industries. Prof.  Yu has written two text books, and published more than 30 high quality  papers.

虞松博士,山东大学工程力学系,教授.主要从事有限元网格划分技术、金属塑性成形过程数值模拟技术、岩石流固耦合分析、岩石非连续变形分析方法研究。主持多项国家自然科学基金、山东省自然科学基金、中国博士后科研基金等,并与国内多家知名企业合作,联合进行技术攻关项目。出版教材2部,发表高水平学术论文30余篇。

报告摘要:

以国内某品牌汽车制动异响为案例,分析制动过程两种噪音产生相关部件和原因,异响产生主要因素来自2个或多个部件的共振频率以及摩擦副材料等  包括制动片材料,制动片材料压缩量,制动片总成尺寸和消音片阻尼特征。针对以上因素进行对比分析研究,通过优化设计和多种消音片NVH对比,并进行多次台架实验和实车路试等,验证了新研制的消音片具有很好的降噪效果。

采用预应力模态分析方法,获得临界状态下制动块压力的具体数值,通过数值模拟分析了制动系统的应力应变特点,并针对不同倒角的摩擦衬片进行预应力分析,指出随着摩擦衬片倒角的增大,各阶对应频率总体呈下降趋势,其中阶次越高下降趋势越明显。另外,摩擦衬片倒角的增加使可能共振阶次增加,增加的可能阶次主要集中在高阶。研究结果为制动器的优化设计提供参考,提升盘式制动器噪声性能控制。

15:00 - 15:30

nvited  speech/邀请报告:对制动NVH的创新研究

Innovative Study on Braking  NVH

Speaker/报告人: WANG  Shuwen/王书文教授

Introduction to  Speaker/报告人简介:

Prof.  Shuwen Wangreceived his PhD degree from the Department of  Engineering at Cambridge ?University, United Kingdom. Dr. Wang was a full  professor at Harbin Institute of Technology (HIT) before he joined the  University of Shanghai for Science and Technology (USST) as a full professor.  His current research interests include structural dynamics, vehicle NVH,  tribology, and surface engineering. ?Prof. Wang has completed various research  projects as a principle investigator or key researcher in China, UK, and Canada.  Prof. Wang has published several top journal papers in J. of Mech. and Phys. of  Solids, Wear, etc. and has applied more than 30 patents in China and USA in  recent years. He was the technical section Co-Chair of the World Tribology  Congress 2009 in Japan. Currently Prof. Wang services as a member of the  editorial board of the Journal of Automotive Innovation.

王书文教授,剑桥大学博士。曾任哈尔滨工业大学教授,现任上海理工大学先进表面工程研究所所长、上海理工大学教授。目前主要研究方向为:结构动力学、车辆NVH,  摩擦学和表面工程。王教授曾作为项目主持人或主要参与人完成了多项国家自然科学基金、英国皇家学会创新基金以及加拿大工程和科学委员会项目,  并在国际著名杂志发表多篇学术论文。已申请30多项中国和美国发明专利,曾作为2009年世界摩擦学大会技术分会的联合主席。目前是汽车创新杂志的编委。

报告摘要:

制动摩擦振动噪声的产生机理和控制技术是学术界和工程技术人员多年来一直在努力解决的世界性难题。本研究从引起摩擦振动噪声的激励源着手,通过激光表面处理技术对制动盘的摩擦表面进行激光改性处理,研究激光表面织构和淬火对制动盘表面硬度、内部组织、残余应力、表面微观形貌以及制动摩擦振动噪声的影响,并探讨制动盘表面激光织构和淬火的减振降噪机理。实验和仿真结果表明,制动盘激光织构后,摩擦表面得压力分布更均匀,摩擦表面的温度降低,制动DTV减小,从而制动摩擦噪声和振动明显减小。而制动盘激光淬火后,其表面残余应力由拉应力变为压应力;内部组织由粗大奥氏体转为均匀细密的马氏体;激光淬火层内部显微硬度比基体硬度可提高2.8倍。与未经激光淬火制动盘相比,激光淬火制动盘制动时产生的振动有了明显降低。由于在摩擦过程中摩擦表面出现很多球化的圆形颗粒,降低了摩擦界面的摩擦系数,改善了摩擦表面形貌,减小了制动盘/片的磨损,并使摩擦系数更趋稳定,因而有效地减小了制动摩擦振动和噪声的产生。  

 

  

 

返回原图
/

吉林省快三走势图 178| 883| 16| 211| 304| 256| 619| 298| 598| 583| 808| 514| 253| 262| 481| 769| 670| 331| 31| 790| 520| 211| 490| 943| 529| 115| 385| 67| 751| 916|